Notebook Eleven | Repository

Feed-Forward Neural Network

Andrea Leone
University of Trento
January 2022


Feed-Forward Neural Network in PyTorch


Fine tuning score board — FFNN

accuracy  precision recall     cm_d         opt    ot   fc_s             es  o_ps     afs

.70422535 .71778046 .69910104  143 223 134  AdamW   /   100  50  3        5  lr=.001  relu
.74366197 .74462098 .73149605  176 231 121  AdamW   /   100  50  3       10  lr=.001  relu
.71690140 .71259160 .70573131  172 220 117  AdamW   /   100  50  3       15  lr=.001  relu
.73098591 .72506101 .72097557  185 215 119  AdamW   /   100  50  3        5  lr=.001  gelu
.73239436 .72760718 .72109458  188 216 116  AdamW   /   100  50  3       10  lr=.001  gelu
.73239436 .72809261 .72339529  186 213 121  AdamW   /   100  50  3       15  lr=.001  gelu
.72394366 .72099120 .72475628  181 194 139  AdamW   /   100  50  3        5  lr=.001  tanh
.72394366 .72102821 .72509976  193 185 136  AdamW   /   100  50  3       10  lr=.001  tanh
.72816901 .72196295 .72203875  197 198 122  AdamW   /   100  50  3       15  lr=.001  tanh

.71267605 .70672317 .70104696  172 219 115  AdamW   /   200 100 50 10 3   2  lr=.001  gelu
.73239436 .73514107 .71769742  170 235 115  AdamW   /   200 100 50 10 3   4  lr=.001  gelu
.72957746 .72578571 .72210928  180 213 125  AdamW   /   200 100 50 10 3   6  lr=.001  gelu
.73098591 .72650338 .71803638  183 222 114  AdamW   /   200 100 50 10 3   8  lr=.001  gelu
.72535211 .72356368 .71844868  170 217 128  AdamW   /   200 100 50 10 3  10  lr=.001  gelu
.73521126 .73416027 .73060146  170 217 135  AdamW   /   200 100 50 10 3  15  lr=.001  gelu
.72816901 .72257897 .72137602  183 209 125  AdamW   /   200 100 50 10 3  20  lr=.001  gelu
.72676056 .73050604 .72551494  164 211 141  AdamW   /   200 100 50 10 3  25  lr=.001  gelu

.60634920 .43402997 .55468008  215 167   0  AdamW  LOF  200 100 50 10 3  10  lr=.001  relu
.72380952 .74413987 .69950558  202 179  75  AdamW  LOF  200 100 50 10 3  15  lr=.001  relu
.62380952 .74634029 .59336458  221 126  46  AdamW  LOF  200 100 50 10 3   5  lr=.001  gelu
.58253968 .68958977 .55505680  216 106  45  AdamW  LOF  200 100 50 10 3  10  lr=.001  gelu
.60476190 .75503580 .57046015  222 124  35  AdamW  LOF  200 100 50 10 3  15  lr=.001  gelu
.66031746 .70950818 .62125433  168 214  34  AdamW  LOF  200 100 50 10 3   5  lr=.001  tanh
.70158730 .71377457 .70376210  132 186 124  AdamW  LOF  200 100 50 10 3  10  lr=.001  tanh
.58253968 .72297925 .55945593  223  90  54  AdamW  LOF  200 100 50 10 3  10  lr=.001  tanh

.69436619 .68575762 .68467514  178 203 112  AdamW   /   200 100 50 10 3  10  lr=.001  tanh
.72112676 .71683019 .71201186  182 211 119  AdamW   /   150 100 20  3     5  lr=.001  tanh
.72253521 .72552228 .70504489  180 229 104  AdamW   /   150 100 20  3    10  lr=.001  tanh
.73098591 .72572215 .71851524  186 219 114  AdamW   /   150 100 20  3    15  lr=.001  tanh

.62253521 .41762818 .56991644  214 228   0  Adam    /   150 100 20  3    10  lr=.001  tanh
.62253521 .41712290 .56959720  212 230  75  Adam    /   150 100 20  3    15  lr=.001  tanh

.62816901 .41884428 .57284948  202 244   0  Adagrad /   200 100 50 10 3  10  lr=.001  tanh
.60563380 .40754160 .55393440  205 225   0  Adagrad /   200 100 50 10 3  15  lr=.001  tanh